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Mathematics (Unit I11)
3 THE METHOD OF UNDETERMINED COEFFICIENTS

A. Introduction; An lllustrative Example

We now consider the {nonhomaogeneous) differential equation

d"y dn - ly dy
aom*‘alax—,.rr*"“+‘ﬂu—1ﬂ+auy=F(X). (4.35)
where the coefficients a,, a,,.. ., @, are constants but where the nonhomogeneous term

F is (in general) a nonconstant function of x. Recall that the general solution of (4.35)
may be written

Yy=JYet ¥Yp

where y, is the complementary function, that is, the general solution of the correspond-
ing homogeneous equation (Equation (4.35) with F replaced by 0), and y, is a particular
integral, that is, any solution of {4.35) containing no arbitrary constants. In Section 4.2
we learned how to find the complementary function; now we consider methods of
determining a particular integral.

We consider first the method of undetermined coefficients. Mathematically speaking,
the class of functions F to which this method applies is actually quite restricted; but this
mathematically narrow class includes functions of frequent occurrence and consid-
erable importance in various physical applications. And this method has one distinct
advantage—when it does apply, it is relatively simple!



P Example 4.29: Introductory Example

d?y dy .
7y S8V g g 436
Il Ty (4.36)

We proceed to seek a particular solution y,; but what type of function might be a
possible candidate for such a particular solution? The differential equation {4.36)
requires a solution which is such that its second derivative, minus twice its first
derivative, minus three times the solution itself, add up to twice the exponential
function e**, Since the derivatives of ¢** are constant multiples of e** it seems
reasonable that the desired particular solution might also be a constant multiple of e**.
Thus we assume a particular solution of the form

¥, = Ae, (4.37)

where A is a constant (undetermined coefficient) to be determined such that (4.37)is a
solution of (4,36). Differentiating (4.37), we obtain

V, =44e* and ¥, = 164e*"
Then substituting into (4.36), we obtain
164e%* — 2(44e*) — 3Ae** = 2%
or
54¢% = 2e**, ' (4.38)

Since the solution (4.37) is to satisfy the differential equation identically for ail x on
some real interval, the relation (4.38) must be an identity for all such x and hence the
coefficients of ¢** on both sides of (4.38) must be respectively equal. Equating these
coeflicients, we obtain the equation

54=2,
from which we determine the previously undetermined coefficient
A=1%

Substituting this back into {4.37), we obtain the particular solution

J’p = %eu.
Now consider the differential equation
d’y ,dy
AN, B SRR PR PXE: .
Il Y 2e {4.39)

which is exactly the same as Equation (4.36) except that e** in the right member has
been replaced by ¢**. Reasoning as in the case of differential equation (4.36), we would
now assume a particular solution of the form

y, = Ae*, (4.40)
Then differentiating (4.40), we obtain

¥, =3Ae** and ) =94e™



Then substituting into (4.39), we obtain
9Ae3* — 2(34e*) — 3(Ade?*) = 23~
or
0 de’ = 2e%
or simply
0 = 2e%x

which does not hold for any real x. This impossible situation tells us that there is no
particular solution of the assumed form (4.40).

As noted, Equations (4.36) and (4.39) are almost the same, the only difference
between them being the constant multiple of x in the exponents of their respective
nonbomogeneous terms 2e** and 2e3*. The equation (4.36) involving 2¢** had a
particular solution of the assumed form Ae**, whereas Equation (4.39) involving 2e3*
did not have one of the assumed form A4e**. What is the difference in these two so
apparently similar cases?

The answer to this is found by examining the solutions of the differential equation

_2 )
Yy W 50 (4.41)

which is the homogeneous equation corresponding to both (4.36) and (4.39). The
auxiliary equation is m? — 2m ~ 3 = 0 with roots 3 and —1; and so

e** and e

-X

are (linearly independent} solutions of (4.41). This suggests that the failure to obtain a
solution of the form y, = Ae* for Equation {(4.39}is due to the fact that the function ¢~
in this assumed solution is a solution of the homogeneous equation (4.41) correspond-
ing to (4.39); and this is indeed the case. For, since Ae3* satisfies the homogeneous
equation (4.41), it reduces the common left member

d’y _dy

dx? 2 dx 3y
of both (4.41) and {4.39) to 0, not 2¢>*, which a particular solution of Equation (4.39)
would have to do. ‘

Now that we have considered what caused the difficulty in attempting to obtain a
particular solution of the form Ae3* for (4.39), we naturally ask what form of solution
should we seek? Recall that in the case of a double root m for an auxiliary equation, a
solution linearly independent of the basic solution ™ was xe™. While this in itself tells
us nothing about the situation at hand, it might suggest that we seek a particular
solution of (4.39) of the form

V= Axed*. (4.42)
Differentiating (4.42), we obtain
V, = 3Axe3‘: + Ae®*, ¥, =9A4xe® + 64¢*~.
Then substituting into (4.35), we obtain
(9A4xe** + 64e%*) — 2(3Axe™™ + Ae3*) — 3Axe* = 2¢3F



or
(94 — 64 — 3A)xe®* + 4Ae™ = 2¢°%,
or simply
Oxe® + 4Ae%* = 2¢7, {(4.43)

Since the {assumed) solution (4.42) is to satisfy the differential equation identically for
all x on some real interval, the relation (4.43) must be an identity for all such x and hence
the coefficients of ¢ on both sides of {4.43) must be respectively equal. Equating
coefficients, we obtain the equation

44 =2,
from which we determine the previously undetermined coeflicient
A=4
Substituting this back into (4.42), we obtain the particular solution
yp = yxe’s,
We summarize the results of this example. The differential equations
d’y dy

AR, Dot SN R, P 4.36
Lo T (.36)
and
d’y dy
2= — 3y = 2e* 4.39
dx? dx 3y =2 (4.39)
each have the same corresponding homogeneous equation
d’y dy
St 2 3y =0, 4.41
PR PR @4h

This homogeneous equation has linearly independent solutions

Ix

e and e %

and so the complementary function of both (4.36) and (4.39) 1s
V. =¢, e + e

The right member 2e** of (4.36) is not a solution of the corresponding homogenecus
equation (4.41), and the attempted particular solution

y, = Ae* (4.37)

suggested by this right member did indeed lead to a particular solution of this assumed
form, namely, y, = 2¢**. On the other hand, the right member 2e°* of (4.39) is a
solution of the corresponding homogeneous equation {4.41) [with¢; = 2and ¢, = 0],
and the attempted particular solution

y, = Ae** (4.40)

suggested by this right member failed to lead to a particular solution of this form.
However, in this case, the revised attempted particular solution,

¥p = Axe™, (4.42)




obtained from (4.40) by multiplying by x, led to a particular solution of this assumed
form, namely, y, = §xe**.
The general solutions of {(4.36) and (4.39) are, respectively,

y=cie¥ + e + 2

and
y=c e + e + xe®™

The preceding example illustrates a particular case of the method of undetermined
coefficients. It suggests that in some cases the assumed particular solution Vp
corresponding to a nonhomogeneous term in the differential equation is of the same
type as that nonhomogeneous term, whereas in other cases the assumed y, ought to be
some sort of modification of that nonhomogeneous term. It turns out that this is
essentially the case, We now proceed to present the method systematically.

B. The Method

We begin by introducing certain preliminary definitions.

DEFINITION

We shall call a function a UC function if it is either (1) ¢ function defined by one of the
following:

(i) x", where n is a positive integer or zero,

(i) e**, where a is a constant # 0,
(iii) sin(bx + c), where b and ¢ are constants, b # 0,
(iv) cos(bx + c), where b and ¢ are constants, b # 0,

or (2) a function defined as a finite product of two or more functions of these four types.

P Example 4.20

Examples of UC functions of the four basic types (i), (ii}, {iii), (iv) of the preceeding
definition are those defined respectively by

X3, e ™ sin(3x/2),  cos(2x + n/d).

Examples of UC functions defined as finite products of two or more of these four basic
types are those defined respectively by

2,3x
»

x%e x cos 2x, €% sin 3x,

sin 2x cos 3x, x3e** sin 5x.

The method of undetermined coefficients applies when the nonhomogeneous
function F in the differential equation is a finite linear combination of UC functions.



Observe that given a UC function f, each successive derivative of f is either itseif a
constant multiple of a UC function or else a linear combination of UC functions.

DEFINITION

Consider a UC function f. The set of functions consisting of f itself and all linearly
independent UC functions of which the successive derivatives of [ are either constant
multiples or linear combinations will be called the UC set of f.

»  Example 4.31
The function f defined for all real x by f(x) = x> is a UC function. Computing
derivatives of f, we find

frix)=3x%  f"(x)=6x, [{x)=6=6'1, [fx)=0 for n>3.

The linearly independent UC functions of which the successive derivatives of f are
either constant multiples or linear combinations are those given by

x=, X, 1.

Thus the UC set of x* is the set § = {x* x%,x,1}.

P Example 4,32
The function f defined for all real x by f(x} = sin 2x is a UC function. Computing
derivatives of f, we find

J{x)=2cos 2x, J"{x) = —4 sin 2x,

The only linearly independent UC function of which the successive derivatives of f are
constant multiples or linear combinations is that given by cos 2x. Thus the UC set of
sin 2x is the set § = {sin 2x, cos 2x}.

These and similar examples of the four basic types of UC functicons lead to the results
listed as numbers 1, 2, and 3 of Table 4.1,

> Example 4.33

-

The function f defined for all real x by f(x) = x7 sin x is the product of the two UC
functions defined by x? and sin x. Hence [ is itself a UC function. Computing
derivatives of f, we find

f'(x) = 2x sin x + x? cos x,
S {x) = 2sin x + 4x cos x — x? sin X,
£ (x) = 6 cos x — 6x sin x — x? cos x,

No “new” types of functions will occur from further differentiation. Each derivative of
f is a linear combination of certain of the six UC functions given by x? sin x, x* cos x,




4.3 THE METHOD UF UNDLItKMINEL CULEFFICIEN T i V)

TABLE 4.1
UC function UC set
i x" fxm xm L x"2,x, 1]
2 ea: ; {enx}
3 sin(bx + ¢) or {sin{bx + c), cos(bx + )}
cos(bx + ¢)
4 xneax {X"Eax, xn—lear, xn—zeax,.”’xeax’eax}
5 x" sin{bx + ¢) or {x" sin(bx + ¢), x" cos(bx + ¢},
x" cos(bx + ¢} x" " Vsin{bx + c), x" "' cos(bx + ¢),
..., x sin{bx + ¢), x cos(bx + ¢),
sin(bx + ¢}, cos(bx + ¢)}
6 e** sin(bx + c)or {e®* sin(bx + c), € cos{bx + ¢)}
e cos(bx + ¢)
7 x"e** sin(bx + c)or {x"e®* sin{bx + ¢), x"e** cos{bx + ¢),
x"e™ cos(bx + c) x""le™sin(bx + ¢), x" 'e™ cos(bx + ¢),...,
‘ xe®* sin(bx + ¢), xe® cos(bx + o),
&™ sin(bx + ¢), ¢** cos(bx + ¢)}

xsinx, xcos x, sin x, and cos x. Thus the set
S = {x?sin x, x? cos x, x 8in x, X €Os x, §in x, cos X}

is the U C set of x? sin x. Note carefully that x2, x, and 1 are not members of this UC set.

Observe that the UC set of the product x? sin x is the set of all products obtained by
multiplying the various members of the UC set {x?, x, 1} of x? by the various members
of the UC set {sin x, cos x} of sin x. This observation illustrates the general situation
regarding the UC set of a UC function defined as a finite product of two or more UC
functions of the four basic types. In particular, suppose his a UC function defined as the
product fg of two basic UC functions f and g. Then the UC set of the product function
k is the set of all the products obtained by multiplying the various members of the UC
set of f by the various members of the UC set of g. Results of this type are listed as
numbers 4, 5, and 6 of Table 4.1 and a specific illustration is presented in Example 4.34,

» Example 4.34
o

The function defined for all real x by f{x) = x? cos 2x is the product of the two UC
functions defined by x* and cc:)s 2x. Using the result stated in the preceding paragraph,
the UC set of this product x> cos 2x is the set of all products obtained by multiplying
the various members of the UC set of x? by the various members of the UC set of
cos 2x. Using the definition of UC set or the appropriate numbers of Table 4.1, we find
that the UC set of x* is

{x3 x% x, 1}




and that of cos 2x is
{sin 2x, cos 2x}.

Thus the UC set of the product x* cos 2x is the set of all products of each of x*, x2, x,
and @ by each of sin 2x and cos 2x, and so it is

{x3 sin 2x, x3 cos 2x, x* sin 2x, x? cos 2x, x sin 2x, x cos 2x, sin 2x, cos 2x}.
Observe that this can be found directly from Table 4.1, number 5, withn = 3, b = 2, and
c=0.

We now outline the method of undetermined coefficients for finding a particular
integral y, of .
dny dn- ly

S + - -

aO dxn @ dxn—l

where F is a finite linear combination

F= Alul + AZ“Z + -+ Amum

d
+---+an_1§+any=F{x),

of UC functions u,, 4,,...,u,, the 4; being known constants. Assuming the comple-
mentary function y, has already been obtained, we proceed as follows:

1. For each of the UC functions
Uiy ooos U

of which F is a linear combination, form the corresponding UC set, thus obtaining the
respective sets

Sy, 85,002, S,

2. Suppose that one of the UC sets so formed, say §;, is identical with or completely
included in another, say S,. In this case, we omit the (identical or smaller) set §; from
further consideration (retaining the set §,).

3. We now consider in turn each of the UC sets which still remain after Step 2.
Suppose now that onie of these UC sets, say §;, includes one or more members which are
solutions of the corresponding homogeneous differential equation. If this is the case,
we multiply each member of S; by the lowest positive integral power of x so that the
resulting revised set will contain no members that are solutions of the corresponding
homogeneous differential equation. We now replace S, by this revised set, so obtained.
Note that here we consider one UC set at a time and perform the indicated multi-
plication, if needed, only upon the members of the one UC set under consideration at
the moment.

4. In general there now remains:

(1) certain of the original UC sets, which were neither omitted in Step 2 nor
needed revision in Step 3, and
{ii) certain revised sets resulting from the needed revision in Step 3.

Now form a linear combination of alf of the sets of these two categories, with unknown
constant coefficients (undetermined coefficients).

5. Determine these unknown coefficients by substituting the linear combination
formed in Step 4 into the differential equation and demanding that it identically satisfy
the differential equation (that is, that it be a particular solution).




This outline of procedure at once covers all of the various special cases to which the
methed of undetermined coefficients applies, thereby freeing one from the need of
considering separately each of these special cases.

Before going on to the 1llustratwe examples of Part C following, let us look back and
observe that we actually followed this procedure in solving the differential equations
(4.36) and {(4.39) of the Introductory Example 4.29. In each of those equations, the
nonhomogeneous member consisted of a single term that was a constant multiple of a
UC function; and in each case we followed the outline procedure step by step, as far as it
applied.

For the differential equation (4.36), the UC function involved was ¢**; and we formed
its UC set, which was simply {e**} (Step 1). Step 2 obviously did not apply. Nor did Step
3, for as we noted later, e** was not a solution of the corresponding homogeneous
equation (4.41). Thus we assumed ¥, = Ae**(Step 4) substituted in differential equation
{4.36), and found A and hence y, (Step 5).

For the differential equation {4.39), the UC function involved was e3*: and we formed
its UC set, which was simply {e 3"} (Step 1). Step 2 did not apply here e:ther But Step3
was very much needed, for ¢** was a solution of the corresponding homogeneous
equation (4.41). Thus we applied Step 3 and multiplied e** in the UC set {e3*} by x,
obtaining the revised UC set {xe**}, whose single member was not a solution of (4.41).
Thus we assumed y, = Axe>* (Step 4), substituted in the differential equation (4.39),
and found A4 and hence y, (Step 5).

The outline generalizes what the procedure for the diflerential equation of
Introductory Example 4.29 suggested. Equation (4.39) of that example has already
brought out the necessity for the revision described in Step 3 when it applies. We give
here a brief illustration involving this critical step.

P Example 4.35

Consider the two equations

g;';— 3%"3+2y=1¢2e’r (4.44)
and

3;)2: -2 % +y=xle* (4.45)
The UC set of x%e™ is

S = {x%e*, xe*, e*}.

The homogeneous equation corresponding to {4.44) has linearly independent
solutions e* and %, and so the complementary function of (4.44)is y, = ¢, e* + ¢, e~
Since member £* of UC setSis a\'solutlon of the homogeneous equation corresponding
to (4.44), we multiply each member of UC set § by the lowest positive integral power of
x 50 that the resulting revised set will contain no members that are solutions of the
homogeneous equation corresponding to (4.44). This turns out to be x itself; for the
revised set

§ = {x%e", x?¢*, xe*}

has no members that satisfy the homogeneous equation corresponding to {4.44).




The homogeneous equation corresponding to (445) has linearly independent
solutions e* and xe*, and so the complementary function of (4.45)is y, = ¢, e* + ¢, xe*.
Since the two members e* and xe™ of UC set S are solutions of the homogeneous
equation corresponding to (4.45), we must modify S here also. But now x itself will not
do, for we would get §’, which still contains xe*. Thus we must here multiply each
member of § by x? to obtain the revised set

S" = {x*e*, x3e*, x2e*},

which has no member that satisfies the homogeneous equation corresponding to (4.45).

C. Examples
A few illustrative examples, with reference to the above outline, should make the

procedure clear. Qur first example will be a simple one in which the situations of Steps 2
and 3 do not occur.

> Example 4.36

d*y dy x :
e 2a‘ — 3y =2¢*— W0sinx.
The corresponding homogenecous equation is
d’y dy
PRt M

and the complementary function is
Ye= @3 + ce7

The nonhomogenous term is the linear combination 2e* — 10 sin x of the two UC
functions given by * and sin x.

1. Form the UC set for each of these two functions. We find

={e*},
S, = {sin x, cos x}.

2. Note that neither of these sets is identical with nor included in the other; hence
both are retained.

3. Furthermore, by examining the complementary function, we see that none of
the functions e*, sin x, cos x in either of these sets is a solution of the corresponding
homogeneous equation. Hence neither set needs to be revised.

4. Thus the original sets §, and §, remain intact in this problem, and we form the
linear combination

Ae* 4+ Bsinx + Ccos x

of the three elements e*, sin x, cos x of §, and §,, with the undetermined coefficients
A B, C.



5. We determine these unknown coefficients by substituting the linear combination
formed in Step 4 into the differential equation and demanding that it satisfy the dif-
ferential equation identically. That is, we take

y, = Ae* + Bsin x + C cos x
as a particular solution. Then |
y,= Ae* + Beos x — Csin x,
y;’:= Ae* — Bsin x — C cos x.
Actually substituting, we find
(Ae‘—Bsinx—Ccosx)—2(Ae‘+Bcosx—Csinx) :
— 3(Ae* + Bsinx + Ccos x) = 2™ — 10sin x
or
—4Ae* + (—4B + 2C)sin x + (—4C — 2B)cos x = 2¢* — 10sin x.

Since the solution is to satisfy the differential equation identically for all x on some real
interval, this relation must be an identity for all such x and hence the coefficients of like
terms on both sides must be respectlvely equal. Equating coefficients of these like terms,
we obtain the equations

—44=2, 4B+2C=-10, —4C—2B=0.
From these equations, we find that
A=-L  B=2 C=-1,
and hence we obtain the particular integral
¥, = —%e€* + 2sinx — cos x.
Thus the general solution of the differential equation under consideration is

-X

Y=Y+ y,=ce> +ce* —4e” + 2sinx —cos x.

»  Example 4.37

d*y _d
dxy—3dy+2y 2x? + &* + 2xe* + de3*,
The corresponding homogeneous equation is
d’y . dy
—=—-3=+2y=90
& xS

and the complementary functio!n is
Vo= c,e* + c e**
The nonhomogenecus term is the linear combination
2x% + e* + 2xe™ + 4e*F

of the four UC functions given by x2, e*, xe*, and ¢%*



1. Form the UC set for each of these functions. We have

S, = {x? x, 1},
SZ = {ex},
8, = {xe*, e*},
S, = {e¥},

2. We note that §, is completely included in 53, so §, is omitted from further
consideration, leaving the three sets

S;={xtx, 1} §;={xe"e*}, §,={e*}

3. We now observe that $; = {xe*, ¢*} includes ¢*, which is included in the
complementary function and so is a solution of the corresponding homogeneous
differential equation. Thus we multiply each member of S; by x to obtain the revised
family '

S5 = {x%e*, xe*},
which contains no members that are solutions of the corresponding homogeneous

equation.
4. Thus there remain the original UC sets

S, = {x? x, 1}
and

S, = {e*}
and the revised set

Sy = {x?e*, xe™}.
These contain the six elements

x% x, 1, &3 x?

e*, xe*.
We form the linear combination
Ax? + Bx + C + De3* + Ex?e® + Fxe*

of these six elements.
5. Thus we take as our particular solution,

¥, = Ax* + Bx + C + De** + Ex®e* + Fxe*.

From this, we have

¥, =2A4x + B + 3De* + Ex?e* + 2Exe* + Fxe* + Fe*,

Y, = 24 + 9De>* + Ex*e* + AExe” + 2Ee™ + Fxe® + 2Fe*,
We substitute y,, y,, yy into the differential equation for y, dy/dx, d*y/dx?, re-
spectively, to obtain:
24 + 9De?* + Ex?e* + (4E + F)xe™ + (2E + 2F )e*

— 3[2A4x + B + 3De** + Ex?¢* + (2E + F)xe* + Fe*]

+ 2{Ax* + Bx + C + De®* + Ex?e* + Fxe¥)

= 2x% + e* + 2xe* + 4e3‘,



or
(24 — 3B + 2C) + (2B — 6A)x + 24x? + 2De** + (~2E)xe* + (2E — F)e*
= 2x? + &* + 2xe* + 4e*~.
Equating coefficients of like terms, we have:
24-3B+2C=0,

2B — 64 =0,
24=2,
2D = 4,
~2E =12,
2E—F=1.

From this 4=1,B=3,C=,D=2E= —1,F= ~3, and so the particular in-
tegral is '

y, = X1 +3x + 7+ 2°% — xte* — 3xe.
The general solution is therefore

Y=Y+ Y, =018 +ce?* + x? 4 3x + 3+ 23 — x%e* — Ixe*,

P Example 4.38
—g%+-j%=3x2+4sinx~2cosx.
The corresponding homogeneous equation is
4 2
A
and the complementary function is
Y. =C; t€3x + ¢38inx + ¢4 ¢o8 X,
The nonhomogeneous term is the linear combination
3x2 +4sinx —2cos x
of the three UC functions given by
x2%, sinx, and cos x.
1. Form the UC set for each of these thiee functions. These sets are, respectively,
Sy = {x* x, 1},
S, = {sin x, cos x},
S, = {cos x, sin x}.

2. Observe that S, and S, are identical and so we retain only one of them, leaving the
two sets

S, ={x%x 1}, §,={sinx, cosx}.




3. Now observe that §, = {x?, x, 1} includes 1 and x, which, as the complementary
function shows, are both solutions of the corresponding homogeneous differential
equation. Thus we multiply each member of the set S, by x* to obtain the revised set

S1 = {x* x3, x?},

none of whose members are solutions of the homogeneous differential equation. We
observe that multiplication by x instead of x? would not be sufficient, since the
resulting set would be (x3, x2, x}, which still includes the homogeneous.solution x.
Turning to the set S,, observe that both of its members, sin x and cos x, are also
solutions of the homogeneous differential equation. Hence we replace S, by the revised
set

§% = {x sin x, x cos x}.

4. Noge of the original UC sets remain here. They have been replaced by the revised
sets 8 and S containing the five elements

x4, x3, x2, x sin x, X COS X.
We form a linear combination of these,
Ax* + Bx* + Cx? + Dxsin x + Ex ¢os x,

with undetermined coefficients 4, B, C, D, E.
5. We now take this as our particular solution

yp = Ax* + Bx® + Cx* + Dx sin x + Ex cos x.
Then
¥, = 4Ax* + 3Bx? + 2Cx + Dx cos x + D sin x — Ex sin x + E cos x,
Vo= 124Ax? 4 6Bx + 2C — Dx sin x + 2D cos x — Ex cos x — 2E sin x,
Yy = 24Ax + 6B — Dx cos x — 3D sin x + Ex sin x — 3E cos x,
Y = 244 + Dx sin x — 4D cos x + Ex cos x + 4K sin x.
Substituting into the differential equation, we obtain

244 + Dxsinx — 4D cos x + Ex cos x + 4E sin x + 124x% + 6Bx + 2C
~Dxsinx +2Dcos x — Excosx - 2Esinx
= 3x? 4+ 4 sin x — 2 ¢cOS x.

Equating coefficients, we find

4A+2C=0

6B =0

124=3
—2D = --2

2E =4,

Hence A =4,8=0,C = —3,D =1, E = 2, and the particular integral is

yp =4x* — 3x% 4+ xsin x + 2x cos x.




The general solution is

y=y+y
=g, + €3X + €3 8in x + ¢4 c08 X + $x* — 3x? + x sin x + 2x cos x.

P Example 4.39 An Initial-Value Problem

We close this section by applying our results to the solution of the initial-value problem

d*y _dy . .

ﬁ—2—25—3y-2e — 10 sin x, {4.46)
y0y=2, (4.47}
¥'(0)=4. (4.48)

By Theorem 4.1, this problem has a unique solution, defined for all x, — o0 < x < o0;
let us proceed to find it. In Example 4.36 we found that the general solution of the
differential equation (4.46) is

y=c,e>* + c,e”* —4e* + 25in x — cos x. (4.49)
From this, we have
dy 3x -x x H
E=3cle \— e —%e* + 2 cos x + sin x. (4.50)

Applying the initial conditions (4.47) and (4.48) to Equations (4.49) and {4.50)},
respectively, we have

2=c.e’ + ¢, — 1% + 25in 0 — cos 0,
4=3c,e"—cye’ —Le® + 2cos0 + sin 0.
These equations simplify at once to the following:
cite;=4%, Y, —c,=13.
From these two equations we obtain
=% =2

Substituting these values for ¢, and ¢, into Equation {4.49) we obtain the unique
solution of the given initial-value problem in the form

y=32e¥ + 27 —te* + 2sin x — cos x.

Exercises

Find the general solution of each of the differential equations in Exercises 1-24.

dty dy
4y _ 34 = dxt
dx? 3 dx T x

dzy dy Ix —3x

L



10,

11

12.

13.

14.

I5.

16.

17.

18,

19.

20.

d? dy
d{+2d + 5y = 6sin 2x + 7 cos 2x.

g+25—i—+2y=1{}sin4x.
-:2{+2:y+4y—cos4x

j; 3:—}’——432«—163:—123

:22+6d + 5y = 2e* + 10e5%,

jz“; +2:_y+ 10y = 5xe” 2%,

gﬁ j’“aﬁ 6y = —18x% + L.
233;4.2; —35{——]0y=8xe'2".
%+jx§+3%—-5y=55in2x+10x2+3x+7.
_4%}.—43———5;“+3y 3x® —8x.

szz’ 4 géi — 6y = 10e2* — 18¢%* — 6x — 11.
:2']; +j—y—2y 6o~ 7 + 3™ — 4x2
%—3%2—{+4y=4e‘-—18e".

fj__i% jxy I +2y=9ez"—833’.
g%+%=2x2+4sinx.

% 333§+Zj'¥—3e"+682’ 6x.
g_;)a_’_éjy.,.;lj — 6y = xe* — 4e** + 6e**.
d’y 4d1y +5-‘-i~'}i—2y=3x2e’ﬂ—78".

dx’  dx? T Tdx



21.

22

23.

24.

dy

dx?

dy
d F
d*y
dx*

d"'y

dx*

+ y = x sin x.

+ 4y = 12x% — 16x cos 2x.

dy d*y

+2 3 3-d——--18x + 16xe* + de** — 9.
d3y d?y dy A )
Sd 3+7d Z—SE+6y-55mx—l2sm2x.

Solve the initial-value problems in Exercises 25-40.

25.
26,
27.
28.
29,
30.
31.
32.
33,
34,
35.
36.
37.

38.

d*y
d2
d?y

x?

d*y

dx?

d?y

dx?

dly

dx*

dzy
axZ
d?y
d T2
d?y
axZ
d?y

dx?

d?y

ax?

d*y

dx*

d?y

dx?

d?y

ax*

d?y

d )

4:—+3y ox:+4, y0)=6 yO=

d
+52bay=16x+20% O =0, yO=3.

-8 :_y + 15y = 9xe**, y(0) =5, y(0) =

+7 j—i + 10y =4xe™, y0)=0, YO =-—

d
+8Z 416y =8 yO=2  yO) =0

+ 6 g-w + Gy = 27e 8, w0y = —2, y{0) =

+4:—y+13y 18e7%,  y0)=0, y(0)=

dy
—10-=+29y=8%  HO)=0 y(O)=

—4:—i+13y=85in3x, yO =1, yO=2.

D gy=8e 5% p0)=3, yO)=5
dx
dy 2 '
— 24 y=2xe*" + 6e7, y0 =1, y0p=20

dx

—y=3x%,  yO=1 y(O)=
+y=3%%—4dsinx, pO=0 Y0 =1

+ 4y = 8 sin 2x, y(0) = 6, y'{0)=28.



d*y 4dy dy

39. 0 A +6y—3xe + 2e* — sin x,
33 ’ rr
Y(O)T-E, yioy=0, y'(0=0
a? d? dy
0. =% - 6d}2’+9——4y-~8x +3 — 6e?

y® =1 yO=7 y(0 =10

For each of the differential equations in Exercises 41-54 set up the correct linear
combination of functions with undetermined literal coefficients to use in finding a
particular integral by the method of undetermined coefficients. (Do not actually find
the particular integrals.)

d’y  _dy x
41. 3;7—63-—-{‘8‘1!-—)5 +xt+e 2.
dz
42, ‘h—§+9y=e3"+e‘3"+e3"sin3x.
d*y dy
4‘ . 4_ — -2x R
3 Tt dx+5y e” (1 + cos x)
dz
44, ﬁ 6jy+9y—x e* + x3e?* 4+ x2e3*
d? ) .
45. B-;‘:i+ﬁj—y+13y=xe“3"sm 2x + x%e” " sin 3x.
" .
46 Qm3d_2£+2dy_xzex+3xez.x+5x2
Codx® Tdx? | Tdx '
d3y d’y dy
a1, SE 622 4 12Y gy e’
B O 1y Sy e e
d4 3 2 d
48. _y+3fi+4d_y+3—y-+y=xle_"+3e"“"2cos£x.
dx* dx? dx? dx 2
14
4. g—{: 16y = x? sin 2x + x*e?*.
X

d® d* d* - .
50, S5 25 155 — %t xtem 4 e sin2x,

dx dx’ dx
dty d*y 5
51. FF+2F+_}J——X cOS X.
d*y
32. Ez+16y=xeﬁ‘sinﬁx+e"5"cosﬁx,
dty L, d’y
53. y+3p—4y=coszx—coshx.
d*y d*y

54. F+ 10;{;5+9y=sinxsin 2x.




4.4 VARIATION OF PARAMETERS

A. The Method

While the process of carrying out the method of undetermined coefficients is actu-
ally quite straightforward (involving only techniques of college algebra and
differentiation}, the method applies in general to a rather small class of problems. For
example, it would not apply to the apparently simply equation

. d?

gt ] + y=tanx

é dx?

We thus seek a method of finding a particular integral that applies in all cases
(including variable coefficients) in which the complementary function is known. Such a
method is the method of variation of parameters, which we now consider.
We shall develop this method in connection with the general second-order linear
differential equation with variable coefficients
d? dy

a(x) E;{“ +a,(0 5 + a,(x)y = F(x) 4.51)

Suppose that y, and y, are linearly independent solutions of the corresponding
homogeneous equation
d*y

7+ al(x)d—y + a,(x)y =0 (4.52)

a0(x) 73 x

Then the complementary function of Equation (4.51) is

c1¥1(x} + c3p2(x),

where y, and y, are linearly independent solutions of (4.52) and ¢; and c, are arbitrary
constants. The procedure in the method of variation of parameters is to replace the
arbitrary constants ¢, and ¢, in the complementary function by respective functions v,
and v, which will be determined so that the resulting function, which is defined by

vy (%) y1(x) + v, (x) y2(x), (4.53)

will be a particular integral of Equation (4.51) {hence the name, variation of
parameters).

We have at our disposal the two functions v, and v, with which to satisfy the one
condition that (4.53) be a solution of (4.51). Since we have two functions but only one
condition on them, we are thus free to impose a second condition, provided this second
condition does not violate the first one. We shall see when and how to impose this
additional condition as we proceed.

We thus assume a solution of the form (4.53) and write

Yp(x} = £y (X) 31 (x) + v2{x)y2(x). (4.54)
Differentiating (4.54), we have
Yoo} = 0, (00 yi () + 02(x) y3 (x) + 01 (x)y1 (x) + 05(X)y2(x), (4.55)

where we use primes to denote differentiations. At this point we impose the




aforementioned second condition; we simplify y, by demanding that

th (x}y1 (x) + v3(x)ya2(x) = 0. (4.56)
With this condition imposed, (4.55) reduces to
Yplx) = v () i {x) + v2(x) 3 (x)- (4.57)
Now differentiating (4.57), we obtain
YpX) = v; (X) Y1 (x) + 02(x) y5 (x) + v} (x)y; (x) + 05(x)y5(x). (4.58)

We now impose the basic condition that (4.54) be a solution of Equation (4.51). Thus we
substitute (4.54), (4.57), and (4.58) for y, dy/dx, and d*y/dx?, respectively, in Equation
(4.51) and obtain the identity

ao (x)[z, (x)y{(x) + 03 (%) y3(x} + v {x)y; (x) + 2 (%) y2(x)]
+ a, (x)[v; (x) 1 (X) + 0,(x}¥2(x)] + a,(X)[v, (x)y,(x}) + v (x}y2(x)] = F(x).

This can be written as

vy (x)[ao(x) 7 (x) + a;(x)y;{x) + a2{x}y; (x)]
+ 03 (x)[ao(x)y2(x) + a, (x}y>2{x) + a,{x}y,{x)]
+ ap ()2} (x)y; O + 03 (x)y3(X)] = F(x). (4.59)
Since y, and y, are solutions of the corresponding homogeneous differential equation

(4.52), the expressions in the first two brackets in (4.59) are identically zero. This leaves
merely

F(x)
ao(%‘)

This is actually what the basic condition demands. Thus the two imposed conditions
require that-the functions v, and v, be chosen such that the system of equations

. (4.60)

vy (x); (%) + 05 (x}ys (x) =

FL0O0, () + ¥, 000, (x) = 0,
P (4.61)
Yoo, (6) + y5 ()0 (x) = ;;%

is satisfied. The determinant of coefficients of this system is precisely

(X} ya(x)
Y1) ya(x)
Since y, and y, are linearly independent solutions of the corresponding homogeneous

differential equation (4.52), we know that W[ y, (x), y2(x)] # 0. Hence the system (4.61)
has a unique solution. Actually solving this system, we obtain

Wy (x), y2Ax)] =

0 ¥a(x)
Fg
g 2% F(9y3(x)

") 7 IR

yilxr  yz(x)

T ag(X) Wy (x), yo(x}]




Y1{x) 0

F(x)

6@ | Fy,)

1) x| ax)Wyi(x), y2 ()T
Yilx) yalx)
Thus we obtain the functions v, and v, defined by

5y (x) = _J‘x F(t)y,{t) dt
! ag(OW Ly (), y,(01

y1(x)

va(x) =

4.62)

by() = J‘ Y FOy(na
3o WLyi (6 y2 (0]

Therefore a particular integral y, of Equation (4.51) is defined by
Yp(x) = 01 (x)y1{x) + 92(x) y,(x),
whete v, and v, are defined by (4.62).

B. Examples

P Example 4.40

Consider the differential equation
1

dy+ = tan (4.63
axz TyT X 63)

The complementary function is defined by
y.{x} = ¢;sin x + ¢, cos x.
We assume y,00) = v, (x)sin x + v,(x)cos x, (4.64)

where the functions v, and v, will be determined such that this is a particular integral of
the differential equation (4.63). Then

yp(x) = vy (x)cos x — vy (x)sin x + v {x)sin x + v} (x)cos x.

We impose the condition

vi{x)sin x + v (x)cosx =0, (4.65)
leaving ¥p(x) = vi(x)cos x — vy(x}sin x.
From this
yo(x) = —p,(x)sin x — vy{x)cos x + v}{x)cos x — v3(x}sin x. (4.66)

Substituting (4.64) and (4.66} into (4.63) we obtain

vy {x)cos x — v (x)sin x = tan x. ) 4.67)



Thus we have the two equations (4.65) and (4.67) from which to determine v (x), v’ (x):
v (x)sin x + ph(x)cos x = (),

vy (x)cos x — p5(x)sin x = tan x.

Solving we find:
0 COS X
, tan x ~—sin x —cosxtanx
vy(x) =1— = = s§in x,
sin x COS X —1

cos x —sinx

sin x 0
L) cosx tanx| sinxtanx —sin®x
UalX) = = - =

sin x COS X -1 - €Os X

Cosx —sinx

cos? x — 1
= = COS X — SEC X,
cos X
Integrating we find:
v(x) = —cosx +¢3, vy{x)=sinx—In|secx +tan x| +c,.  {4.68)

Substituting {4.68) into (4.64) we have

Vp(X) = (—cos x + c3)sin x + (sin x — In |sec x + tan x| + ¢4)cos x
= —sin x Cos x + ¢;38in x + sin x cos x
—In |sec x + tan x| (cos x)} + c,c08 x
= 3 8IN X + ¢,4c08 x — {cos x)(in {sec x + tan x|}.

Since a particular integral is a solution free of arbitrary constants, we may assign any
particular values 4 and B to ¢, and c,, respectively, and the result will be the particular
integral

A sin x + Bcos x — (cos xj(In [sec x + tan x[).
Thus y = y, + y, becomes
y=oc¢ sinx 4+ cyc08 x + Asinx + Boos x — (cos x)(In |sec x + tan x|),
which we may write as
- y=C, sinx + C, cos x — (cos x){In |sec x + tan x{},

where C, =¢, + A, C; = ¢, + B.
Thus we see that we might as well have chosen the constants ¢, and ¢, bothequalto 0
in (4.68), for essentially the same result,

y=c; $in x + ¢, cos x — (cos x){In [sec x + tan x|),
would have been obtained. This is the general solution of the differential equation
(4.63).

The method of variation of parameters extends to higher-order linear equations. We
now illustrate the extension to a third-order equation in Example 4.41, although we




hasten to point out that the equation of this example can be solved more readily by the
method of undetermined coefficients.

> Example 4.41

Consider the differentiat equationg
dy  d* dy .
—dx3—6'~—x2+11—~6y-e. (4.69)

d dx
The complementary function is
Yo(x) = ¢ 8" + ¢, + cye%%.
We assume as a particular integral
Vp(x) = vy (x)e* + vy(x)e*™ + vy(x)e™, (4.70)

Since we have three functions v, v,, v, at our disposal in this case, we can apply three
conditions. We have:

Yo(x) = vy (x)e* + 2p3(x)e?* ;+ 3v;(x)}e> + vi(x)e” + vy(x)e? + vy(x}e®*.

Proceeding in a manner analogoﬁs to that of the second-order case, we impose the
condition

v} (x)e* + vy(x)}e?* + vy(x)e3* =0, @.71)
leaving
Vp{x) = vy (x)}e* + 2v5(x)e** + 3v,(x)e>~. 4.72)
Then
Yalx) = vy {x}e* + dv,(x)e?* + Yv3(x)e>* + v (x)e* + 205 (x)e®* + vy (x)e™™.
We now impose the condition
vi(x)e* + 2v5(x)e** + 3v4(x)e®* = 0, 4.73)
leaving
Yp(x) = vy {x)e” + 4y (x)e?* + Yv;(x)e™. 4.79)
From this,
Yo (x) = vy (x)e® + 8v,(x)e* + 2Tv,(x)e>* + v] (x)e™ + dv)(x)e** + Iv;y(x)e’
4.75)

We substitute {4.70), (4.72), (4.74), and (4.75) into the differential equation (4.69),
obtaining:
vy (x)e” + 8u,(x)e?* + 2Tv5(x)e>* + v/ {x)e* + dv(x)e®* + 9v,{x)e*
— 6p, (x)e* — 24p,(x)e®* — 54v;(x)e>* + 11p,(x)e* + 22v,(x)e** + 33v,y(x)e>”
—6v, (x)e* — 6v,(x)e** — 6vy(x)e>* = e*
or

vy (x)e* + vy (x)e?* + y(x)e®* = e~ (4.76)




Thus we have the three equations (4.71), (4.73), (4.76) from which to determine
v1(x), p3(x), v3(x):
vy (x)e* + v(x)e?* + vy(x)e* =0,
v} (x)e* + 205 (x)e?* + Ivy(x)e>* =0,

vy {(x)e* + vy (x)e?* + W (x)e** = ¢~

Solving, we find

0 ez.r e3x
0 203% 33 sxil 1
e* 422.\: 983.: 2 3 1
vy (x) = PE PR P = ]l 11 =
& 22 3| € |1 2 3
¥ 4e** Qpis| - 1 4 9
e 0 e3*
s 0 3> 11
, e* e 93 - 1 3 —x
va(x) = e e e | 2efr T ¢
e 2e* 3™
ex 4e2x 9e3x
ex er O
e* 2> 0 w1
, e 4 | f 112 1 .
U3(I)= e* e?.x e3x = zeﬁx -=Ee
e 2e¥* 33
e de¥ 9o

We now integrate, choosing all the constants of integration to be zero (as the previous
example showed was possible). We find:

v () =4x, v,(x)=eF.  v(x)= —Le
Thus

yp(x) =%xe* + e %e?* — Lo~ e = dxe* + Fe”.
Thus the general solution of Equation (4.53} is

V=Yt yp=cie +ce? +cae + fxe* + g€
or

y=cre* + ce* + ¢ 3 + 1xe%,
where ¢, = ¢; + 3.
In Examples 4.40 and 4.41 the coefficients in the differential equation were constants,

The general discussion at the beginning of this section shows that the method applies
equally well to linear differential equations with variable coefficients, once the



complementary function y, is known. We now illustrate its application to such an
equation in Example 4.42.

P Example 4.42

Consider the differential equation

d’y dy
2 ) 2x =6(x2 + )2 ,
(x* + )a'le X +2y=6(x"+1) 4.7
In Exampie 4.16 we solved the cbrresponding homogeneous equation
, d?y :fy
2 1) — — s -
(x* + )dxl Zxdx + 2y =0.

From the results of that example, we see that the complementary function of equation
4.77)is .

V() =, x + ¢ (x* = 1).
To find a particular integral pf F;‘quation (4.77), we therefore let
y, (%) ;= 9, ()% + vy{x)(x* = 1). (4.78)
Then !l
¥p(X) =05 () 1 + 0;(x) - 2x + o3 (x)x + &3 (x)(x% — 1),

We impose the condition

v ()x + 05 (x)(x? — 1) =0, 4.79
leaving
Yolx) = 0,(%) - 1 4 v5(x) - 2x. {4.80)
From this, we find
Ya(x) = v (x) + 2v3(x) + v3(x) ' 2x. {4.81)

Substituting (4.78), {4.80), and (4.81) into {4.77) we obtain
(%2 + Do} (x) + 2v,(x) + 2xv5(x}] - 2x[v,(x} + 2x0,(x)]
+ 2[v, ()% + vz (x)(x2 — 1] = 6(x? + 1)?
or
(x? + 1){v, (x) + 2xv5(x)] = 6(x? + 1)% (4.82)

Thus we have the two equations (4.79) and {(4.82) from which to determine v (x) and
v3(x); that is, v} {x) and v;(x) satisfy the system

v {x)x + v3(x)[x2 =11 =0,
v (x) + v (x)[2x] = 6(x* + 1).




Sotving this system, we find

0 x? -1
, 6(x+1) 2x | —6(x? +1){x -—1) 5
=g — = e 6(x* — 1),
1 2x
X

1 6(x2+1) _6x(x +1)

v20) = x2—1 x* 41
—‘1 2x

Integrating, we obtain
vy{x) = —2x* + 6x,  v,y(x) = 3x?, (4.83)

where we have chosen both constants of mtegrahon to be zero. Substituting (4.83) into
(4.78), we have

= 6x.

Yp(x) = (—2x> + 6x)x + 3x2(x* — 1)
= x* 4 3x2

Therefore the general solution of Equation (4.77) may be expressed in the form

y=y.t+y .
=¢c; X + cy(x2 ~ 1) + x* + 3x2,

Exercises

Find the general solution of each of the differential equations in Exercises 1-18.

L %;—“i)-+y=cotx. - 2. joy+y tan® x.
3 %+y=secx. 4, g+y=sec3x.
5. g—?z-+4y=sec22x.

6. :27";+y=tanxsecx.

7. g+-4j—z+5y—e'“secx.

8. %-—2%+Sy~e‘tat_12)c.

9. -;t—‘;’+6%+9y=e_:x.

10. dzy*Zj—y+y*—xe‘lnx(x>0).



DEFINITION

Let [1,f,,..., [, be nreal functions each of which has an (n — 1)st derivative on a real
interval a < x < b, The determinant :

. _ . {fl fZ L f
WS farenfi) = Tr &

n
r
n

. k]

'f(ln—l) f{zn—l) fﬂu—l)



in which primes denote derivatives, is called the Wronskian of these n functions. We
observe that W{{\,/5,....1,) isitself a real function defined ona < x < b. Its value at x
is denoted by W( 1, f5..... LMx} or by W[ fy(x), f1(x),.... f(x)].

THEOREM 4.4

The n solutions f, f,,..., [, of the nth-order homogeneous linear differential equation
(4.2} are linearly independent on a < x < b if and only if the Wronskian of f,,f1,..../,
is different from zero for some x on the interval a < x < b,

We have further:

THEOREM 4.5 -

The Wronskian of nsolutions {1, f,,..., [, of (4.2} is either identically zeroona < x < b
or else is never zero ona < x < b.

Thus if we can find n solutions of (4.2), we can apply the Theorems 4.4. and 4.5 to
determine whether or not they are linearly independent. If they are linearly inde-
pendent, then we can form the general solution as a linear combination of these n
linearly independent solutions.

In the case of the general second-order homogeneous linear differential equation

d’y dy

Bolx) 27 + & (x) o+ axdx)y =0, (4.4)

the Wronskian of two solutions f, and f; is the second-order, determnant

h h
fv 1

By Theorem 4.4, two solutions f, and f, of (4.4) are linearly independentona < x < b

Wi, )=

=fuf2 = J1ifs-

if and only if their Wronskian is different from zero for some x ona < x < b;and by -

Theorem 4.5, this Wronskian is either always zero or never zeroona < x < b, Thus if
W fi(x), f5(x)]#0 on a<x<b, solutions f; and f, of (4.4) are linearly independent
ona < x < band the general solution of (4.4) can be written as the linear combination

¢ filx) + 3 fa(x),

where ¢, and ¢, are arbitrary constants.

P Example 4.14

We apply Theorem 4.4 to show that the solutions sin x and cos x of

s epprmrnthor,




are linearly independent. We find that

. sinx = cosx ,
Wi(sin x, cos x) = = —sin?x —~cos?x=—1#0

cos x —sin x

for all real x, Thus, since W(sin x, cos x) 5 0 for all real x, we conclude that sin x and
cos x are indeed linearly independent solutions of the given differential equation on
every real interval.

> Example 4.15

The solutions e*, e %, and ¢~ of

d’y Zdzy dy

i R M Bl

are linearly independent on every real interval, for

s 7% el 1 1 1
Wies e % ey ={e* —e™* 203 =e? 1 —1 2= —6e2* %0
e* g% 4o 1 1 4

for all real x.

Exercises

1. Theorem 4.1 applies to one of the following problems but not to the other.
Determine to which of the problems the theorem applies and state precisely the
conclusion which can be drawn in this case. Explain why the theorem does not
apply to the remaining problem.

d’y  dy . ,
@ SF+5Z+6y=en yO)=5  yO)=
d?y .
(b) 459 Y Ley=er,  y0)=5  y()=T.

dx? dx
2. Answer orally: What is the solution of the following initial-value problem? Why?

diy dy ' ,
dx2+xa~—+xy 0, y(1) =0, y{1)=0.
3. Prove Theorem 4.2 for the case m = n = 2. That is, prove that if f,(x) and f;(x)
are two solutions of

d?y

ao(x) e + a; (x) + a{x)y =0,

then ¢, f,(x) + ¢, f2(x) is also a solution of this equation, where ¢, and ¢, are
arbitrary constants.




. Consider the differential equation

d’y . dy
2r 4% =0,
34 +3y=0 (A)

(@) Show that each of the functions e* and e* is a solution of differential
equation (A} on the interval a < x < b, where a and b are arbitrary real
numbers such that a < b.

(b) What theorem enables us to conclude at once that each of the functions
S5e* + 23, 6e* — de?*, and —7e* + Se3*

is also a solution of differential equation (A)ona < x < b?
{c} Each of the functions

3e*, —4e*, 5¢%, and 6¢e*

is also a solution of differential equation (Alona £ x < b. Why!

Again consider the differential equation {A) of Exercise 4.

(a) Use the definition of linear dependence to show that the four functions of
part (c) of Exercise 4 are linearly dependent ong < x < b.

(b) Use Theorem 4.4 to show that each pair of the four solutions of differential
equation (A) listed in part {c) of Exercise 4 are linearly dependent on
asx<b .

Again consider the differential equation (A) of Exercise 4.

(a) Use the definition of linear independence to show that the two functions e*
and e** are linearly independent ona < x < b.

{b) Use Theorem 4.4 to show that the two solutions e* and e** of differential
equation (A) are linearly independent on a < x < b.

Consider the differential equation

d?y  dy
dx -5 d_ + 6}’ Q.

(a) Show that 2= and e** are linearly independent solutions of this equation on
the interval — o0 < x < c0.

(b) Write the general solution of the given equation,

{c) Find the solution that satisfies the conditions y(0) = 2, y'(0) = 3. Explain
why this solution is unique. Over what interval is it defined?

Consider the differential equation

2
ﬁ_y_ dy y =0

dx? dx
(@) Show that e* and xe* are linearly independent solutions of this equation on
the interval — oo < x < o0,
(b) Write the general solution of the given equation.

{¢) Find the solution that satisfies the condition y(0) = 1, y'(0) = 4. Explain why
this solution is unique. Over what interval is it defined?



4.5 THE CAUCHY-EULER EQUATION

A. The Equation and the Method of Solution

In the preceding sections we have seen how to obtain the general solution of the nth-
order linear differential equation with constant coefficients. We have seen that in such
cases the form of the complementary function may be readily determined. The general
nth-order linear equation with pariable coefficients is quite a different matter, however,
and only in certain special cases can the complementary function be cbtained explicity
in closed form. One special case of considerable practical importance for which it
is fortunate that this can be done is the so-called Cauchy-Euler equation {or equi-
dimensional equation). This is an equation of the form

d" anly dy

Ao x"—= + a, x""} 4+t g, x=—+a,y= F(x 4.84)

Y] dxn 1 dxn 1 n—-1 dx .'ly { )’ (
where ag,a,,....a,_,, 4, are constants. Note the characteristic feature of this
equation: each term in the left member is a constant multiple of an expression of the
form

dk
it 4 ’



How should one proceed to solve such an equation? About the only hopeful thought
that comes to mind at this stage of our study is to attempt a transformation. But what
transformation should we attempt and where will it lead us? While it is certainly
worthwhile to stop for a moment and consider what sort of transformation we might
use in solving a “new” type of equhtion when we first encounter it, it is ¢ertainly not
worthwhile to spend a great deal of time looking for clever devices which mathema-
ticians have known about for many years. The facts are stated in the following theorem.

THEOREM 4.14

The transformation x = e' reduces the equation
n n—1 d
a, d{"‘“l"l 4+ 4 a, lxdy

to a linear differential equation with constant coefficients.

¥y

PRIy +a,y = F(x) {4.84)

This is what we need! We shall prove this theorem for the case of the second-order
Cauchy—-Euler differential equation
d?y d
dxﬁ +ax dy +ayy = F(x). (4385)

The proof in the general nth-order case proceeds in a similar fashion. Letting x = ¢,
assuming x > 0, we have t = In x. Then

dy dydt 1dy
dx  drdx xdt

fy 14 (0) 00 0) 1 (Ea) 1
dx?  xdx \dt dt dx Tx\dt?dx/) xT dt

Tdyt __l_ﬁ=L ﬂ_dl
x\dt? x] x*dt x*\dt* dt)

by _dy o adly_dy

Yax Ta M T T ar T w
Substituting into Equation (4.85) we obtain

2y d
ao(d dy) +a, 2+ ayy = FleY)

agx?

and

Thus

dt* | dt dt

or

d’y dy

Ag dt_z + A4, E + A,y = G(t), (486)

where

Ay = aq, A, =a; —aq, A; =a,, G(f)=F(‘?:)-



This is a second-order linear differential equation with constant coeflicients, which was
what we wished to show.

Remarks. 1. Note that the leading coefficient a,x" in Equation (4.84) is zero for
x = 0, Thus the basic interval ¢ < x < b, referred to in the general theorems of Sec-

tion 4.1, does not include x = Q. ‘

2. Observe that in the above proof we assumed that x > 0. If x < 0, the substitution
x = —¢" is actually the correct one. Unless the contrary is explicitly stated, we shall
assume x > 0 when finding the general solution of a Cauchy-Euler differential
equation.

B. Examples

»  Example 4.43
d’y dy
I o - 2x—= = x3 4,
Xt o3 2x Tx +2y=x (4.87)
Let x = ¢'. Then, assuming x > 0, we have t = In x, and

dly 1fdydy 1dy 1/(dy dy
dx?  x\dt? dx x2dt  xI\dti?  dt)

Thus Equation (4.87) becomes

or
dz . .
i A P (4.88)

The complementary function of this equation is y, = ¢, &' + ¢, e?. We find a particular
integral by the method of undetermined coefficients. We assume. y, = Ae*. Then
¥, = 34e”, y, = 94e*, and substituting into Equation (4.88) we obtain -

243 = .
Thus A =4 and we have y, = Je*. The general solution of Equation (4.88) is then
y=c e +ce? + e

But we are not yet finished! We must return to the original independent variable x.
Since ¢' = x, we find

y=cx+ x4+ 4x3
This is the general solution of Equation (4.87).

Remarks. 1. Note carefully that under the transformation x = &' the right member
of (4.87), x3, transforms into ¢¥. The student should be careful to transform both sides
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of the equation if he intends to obtain a particular integral of the given equation by
finding a particular integral of the transformed equation, as we have done here.

2. We hasten to point out that the following alternative procedure may be used.
After finding the complementary function of the transformed equation one can im-
mediately write the complementary function of the original given equation and then
proceed to obtain a particular integral of the original equation by variation of param-
eters. In Example 4.43, upon finding the complementary function c,e' + c,e? of
Equation (4.88), one can immediately write the complementary function ¢, x + ¢; x2 of
Equation (4.87), then assume the particular integral y (x) = v;(x)x + v,(x)x?, and
from here procced by the method of variation of parameters. However, when the
nonhomogeneous function F transforms into a linear combination of UC functions, as
it does in this example, the procedure iljustrated is generally simpler.

P Example 4.44 .

x :xy - 4x 23—1+8x ~8y=4lnx (4.89)
Assuming x > 0, we let x = e'.‘ Then ¢ = In x, and
dy 1 ﬁ
dx xadt’
4y _L(dy dy
dx?  x*\d? e
3
Now we must consider d——{
dx
£y _1.d(dy dyy 2 (dy dy
w3 xTdx \dt?  dt) x*\der dt

S dayd_t_ 2y di
x2\deP dx  de? dx ar?

(a2 [y s

Tx3\d? T ar) B \d? dt
1 (d3y d?y dy

Thus, substituting into Equation (4.89), we obtain

d3y _d*y _dy d’y dy dy
—_—— 4
(dt3 ST P 4(dz )t s(dt —Yy=4

d3y d*y dy
P R

The complementary function of the transformed equation (4.90) is

3

\-___/
'N
———
n.

h

‘-:
&I@“
S

or

_ 8y = 4. (4.90)

Ve =c e + c ¥ + cze™



We procced to obtain a particular integral of Equation (4.90) by the method of un-

tik

_ determined coefficients. We assume y, = At + B. Then y, = 4, yj, = y,' = 0. Substi-
tuting into Equation (4.90), we find

144 — 8At — 8B = 4¢.
Thus
-84 =4, 144 — 8B =0,
and so A = —4, B = —{. Thus the general solution of Equation (4.90) is
y=c e +ce* +cje ~ 4t~ 4,
and so the general solution of Equation (4.89) is
y=cx+c;x2 +e3x* —4nx —§.

Remarks. In solving the Cauchy—Euler equations of the preceding examples, we
observe that the transformation x = ¢’ reduces

dy dy 2 4%y d’y dy
* Y e Vi Y G ar
and
L A B Y.
dx? de? de? dt’
We now show (without proof) how to find the expression into which the general term
4y
dx"’

where n is an arbitrary positive integer, reduces under the transformation x == ¢'. We
present this as the following formal four-step procedure.

1. For the given positive integer a, determine
rr—1)r—2)[r—(n— 1]

2. Expand the preceding as a polynomial of degree nin r.

w4V
3. Replace r* by e foreachk=1,23,...,n
d'y .
4. Equate x" to the result in Step 3.

dx"
For example, when n = 3, we have the following illustration.
1. Sincen = 3,n— 1 =2 and we determine r(r — 1}{r — 2).

2. Expanding the preceding, we obtain r® — 3r? + 2r.
. ) day dzy dy
3. Replacing r? by AT r* by L and r by o e have

d3y

d?y _dy
dt_"’ +2

It iy




THEOREM 4.17

Two solutions f, and f, of the second-order homogeneous linear differential equation
(4.91})are linear independent ona < x < bif and only if the value of the Wronskian of f,
and f; is different from zero for some x on the interval a < x < b.

Method of Proof. We prove this theorem by proving the following equivalent
theorem.

THEOREM 4.18

Two solutions f, and f, of the second-order homogeneous linear differential equation
(4.91) are linearly dependent ona < x < bif and only if the value of the Wronskian of f;
and f; is zero forall xona < x < b:

H(x) f2(x)
Ji(x) fix)

=0 forallxena<x<h.

Proof. Part 1. We must show that if the value of the Wronskian of f; and f, is zero
for ali x on a < x < b, then f, and f, are linearly dependent on a < x < b. We thus



assume that

il f2(x)
fix) S0

for all x such that a < x < b. Then at any particular x,, such that a < x, < b, we have

filxo)  falxo)
Ji(xe)  f3(x0)

Thus, by Theorem B, there exist constants ¢, and ¢,, not both zero, such that
€1 filxo) + €3 falxo} = 0,
¢1f1(x0) + €2 f2(x0) = 0.
Now consider the function f defined by
Sy =c filx}+ ¢, fo(x), a<x<h.

By Theorem 4.15, since f; and f, are solutions of differential equation (4.91), this
function f is also a solution of Equation (4.91). From (4.101), we have

flxa)=0 and f'(x) =0.

Thus by Theorem A, Conclusion 2, we know that

=0

(4.101)

f(x)=0 forallxona<x<hbh
That is,
i filx)+ ¢ f3(x)=0

forall x on a < x < b, where ¢, and ¢, are not both zero. Therefore the solutions f; and
[ are linearly dependent on a < x < b.

Part 2. We must now show thatif f; and f; are linearly dependentona < x < b, then
their Wronskian has the value zero for all x on this interval. We thus assume that f; and
[, are linearly dependent on g < x < b. Then there exist constants ¢, and ¢,, not both
zero, such that

G [ilx) 4+ ¢, f,(x)=10 (4.102)
for all x on a < x < b. From (4.102), we also have
afix) +c f3(x)=0 {4.103)

forall x ona < x < b. Now let x = x, be an arbitrary point of the intervala £ x < b.
Then (4.102) and (4.103) hold at x = x,. That is,

¢y filxe) + 2 f2{x0) =0,
1 fi(xg) + ¢3 f2lx0) =0,
where ¢, and ¢, are not both zero. Thus, by Theorem B, we have

Jilxe)  f2(xo)
Silxe)  f2(xo)

Bitt this determinant is the value of the Wronskian of f; and f, at x = x4, and x4 is an




arbitrary point of @ < x < b. Thus we have

filx)  filx) _
S1(x) f3(x)
forallxona<x<bh . Q.E.D.

THEOQOREM 4.19

The value of the Wronskian of two solutions f; and f, of differential equation (4.91)
either is zero forall xona < x< bhoriszerofornoxona < x < b.

Proof. If f, and f, are linearly dependent on g < x < b, then by Theorem 4.18, the
value of the Wronskian of f; and f; iszeroforall xona< x < bh.

Now let f, and f; be linearly indep‘endent on a < x < b; and let W denote the
Wronskian of f, and f3, so that

L) Lilx)

W =10 a0

Differentiating this, we obtain

filx} fo(x)

W’ =
&) £ix) f309)

fi®) f3(0)
IO

and this'reduces at once to

Silx)  falx)
fix) i)
Since f, and f; are solutions of differential equation {4.91), we have, respectively,
ao(x}f{(x} + a1 (x) [y (x) + a2 (x) f, (x) = C,
ag(x)f30x) + a,(x)f2(x) + a2 (x) f,(x) = 0,

W (x) = (4.104)

and hence
@l 4y
fix)= 20 (%) Ji(x) ao(%) — fi(x),
iy 41(¥) az(x)
fz{x)——ao()fz() ()fz()
on a < x < b. Substituting these expressions into (4.104), we obtain
Si(x) f2(x}
W'(x) = _ ay(x) . _ a,(x) 4 (x) a,(x)
g [0 = AW = ) = A
This reduces at once to
S1(x) f2(x) Si(x) Sfa{x)
Wi =| _ @l g 00 14900 gy @) )

2,007 " T &) do(x) ao(x)



and since the last determinant has two proportional rows, this in turn reduces to

a,(x} | fi{x)  falx)
Wix)= — -
el AN AN
which is simply
' _ al(x)
W (x) = ?ao{x) Wix).

Thus the Wronskian W satisfies the first-order homogeneous linear differential
equation
dw  a,(x)

dx T ag(x) w=0

Integrating this from x, to x, where x, is an arbitrary point of a¢ < x < b, we obtain

* ay(t)
Wix) = cexp| — dt].
’ "[ J aal®
Letting x = x,, we find that ¢ = W(x,). Hence we obtain the identity

W(x) = W(xo)exp[—— f Eliﬂdz], (4.105)
X0 aﬂ(t)

valid for all x on a < x < b, where x, is an arbitrary point of this interval.

Now assume that W(xy) = 0. Then by identity (4.105), we have W(x) = O for all x on
a < x < b. Thus by Theorem 4.18, the solutions f, and f, must be linearly dependent
on 4 < x<b. This is a contradiction, since f, and f, are linearly independent.
Therefore the assumption that Wix,) = 0 is false, and so Wi(x;) # 0. But x; is an
arbitrary point of a < x < b, Thus Wix)iszerofornoxonga < x < b.

Q.E.D.

THEOREM 4.20

Hypothesis. Let f, and f, be any two lirearly independent solutions of differential
equation(4.9)ona < x < b. .

Conclusion. Thenevery solution f of differential equation (4.91) can be expressed as
a suitable linear combination

o fi+efs

of these two linear independent solutions.

Proof. Let x, be an arbitrary point of the interval a < x < b, and consider the
following system of two linear algebraic equations in the two unknowns &, and k.

ky fi1(xp) + k3 f1(xq) = f(xo},
ki fi(xo) + k2 f2(x0) = f'(x0). (4.106)

Since f and [, are linearly independent on a < x < b, we know by Theorem 4.17 that.
the value of the Wronskian of f, and [, is different from zero at some point of this



interval. Then by Theorem 4.19 the value of the Wronskian is zero for no x on
a < x < b and hence its value at x, is not zero. That is,

fikxe)  falxg)
filxe)  falxo)

Thus by Theorem C, the algebraic system {4.106) has a unique solution k, = ¢, and
k; = c;. Thus for k, = ¢, and k; = c,, each left member of system (4.106) is the same
number as the corresponding right member of (4.106). That is, the number ¢, f; {xo} +
¢, fr{xq}is equal to the number f(x,), and the number ¢, /7 (x,) + ¢, f5(x,) isequal to
the number f*{x,). But the numbers ¢, f, (xy) + ¢, f2(xg)and ¢, £ (xo) + ¢, [ 2(xo) are
the values of the solution e, f; + ¢, f; and its first derivative, respectively, al xo; and the
numbers f(x,) and f'(x,) are the values of the solution f and its first derivative,
respectively, at xq. Thus the two solutions ¢, f; + ¢, f; and f have equal values and
their first derivative also have equal values at x,. Hence by Theorem A, Conclusion 1,
we know that these two solutions are identical throughout the intervala < x < b. That
is,

#0.

J(x)=cy fi(x) + ¢ f3(x)

forall x ona < x < b, and so f is expressed as a linear combination of f, and f,.
Q.E.D.

Exercises

1. Consider the second-ordér homogenous linear differential equation

f dzy d_‘,‘
F—32‘;+2y=0.

(a) Find the two lincarly independent solutions f, and f, of this equation which
are such that
fi{0)=1 and f1(0)=0

and
HO=0 and [5(0)=1.
(b) Express the solution
3e* + 2%

as a linear combination of the two linearly independent solutions f; and f;
defined in part (a).

2. Constder the second-order homogencous linear differential equation

d? d
8 3 + 0 X) 2 + a9y =0, (A)

where ay, 4,, and a, are continuous on a real interval ¢ < x < b, and a,(x) # Ofor
all x on this interval. Let f, and f, be two distinct solutions of differential equa-
tion (A) on @ < x < b, and suppose f,(x) # 0 for all x on this interval. Let
WIS (x), f3(x)] be the value of the Wronskian of f; and f; at x.






